

水星探査計画「ベピコロンボ」 Mercury Exploration Project "BepiColombo"

「BepiColombo(ベビコロンボ)」とは、日本とヨーロッパ (European Space Agency(ESA):欧州宇宙機関)が共同 で計画中の水星探査ミッションです。BepiColomboは、水星 の公転周期と自転周期が3:2となることを示したり、NASA にマリナー10号の軌道を提言したりと水星に大変ゆかり の深いイタリアの応用数学者ジュセッペ・コロンボ博士(ベビ は愛称)に因んでその名前がつけられています。

水星は、その存在こそは太古の昔より知られていたもの の、「未知の惑星」です。太陽に最も近い惑星の探査には、 「過酷な温度環境」と「軌道投入の困難さ」がつきまとい、 本格的な探査は長く阻まれてきました。

「ベビコロンボ」は、日本が開発を担当する、水星の固有磁場、磁気圏、大気の観測を目的とした「水星磁気圏探査機(MMO)」と、ヨーロッパが開発を担当する、水星の磁場、表面地形、鉱物・化学組成、重力場の精密計測を目的とした「水星表面探査機(MPO)」の2つの周回探査機からなる日欧共同計画です。水星本体と水星環境の総合観測を行い、太陽系の起源に迫ります。

「MMO」と「MPO」はアリアン5型ロケットで一緒に打ち 上げられる予定です。 "BepiColombo" is a Mercury exploration mission being jointly planned by Japan and Europe (European Space Agency, ESA). The Name "BepiColombo" is after Giuseppe Colombo who was a Italian scientist, mathematician and engineer. He showed why Mercury's revolution period and rotation period is synchronized with 3:2 and proposed orbit for Mariner-10 to NASA. Bepi is his nickname.

While its presence has been known for a long time, Mercury still remains to be a mysterious planet. Being quite close to the sun, a mission to explore the planet suffers from the harsh thermal condition and the difficult orbit insertion scheme. Indeed a full scale mission exploring Mercury had not been planned until recently.

The BepiColombo project is composed of two orbiters, Mercury Magnetospheric Orbiter (MMO) and Mercury Planetary Orbiter (MPO). MMO will be developed by JAXA and will perform observations of magnetic field, Mercury's magnetosphere and exosphere. MPO will be developed by ESA and will observe Mercury's surface, chemical compositions, gravity and magnetic field. Through full scale exploration of the planet and its environment, the origin of the solar system will also be pursued. MMO and MPO will be launched by a single Ariane 5 rocket.

「未知の惑星」水星の磁場と磁気圏、起源と進化を探査

Exploration of the mysterious planet, Mercury: Its magnetic environment, origin and evolution

「ベピコロンボ計画」は、MMOとMPOの2機の探査機で水星の謎に迫ります

水星の形成史を探る

太陽系の最も内側にできた水星は、鉄の中心核が3/4も占めるなど特異な天体です。 その解明は太陽系形成の謎を明らかにすることにもつながります。

水星磁場の成因を探る

火星·金星にはない磁場が、水星·地球にはあるのは何故か? 惑星磁場を初めて精密に測定 することでその成因を解明します。

水星磁気圏の活動を探る

特異な状況にある水星磁気圏の示す電磁活動の観測は、宇宙プラズマの振る舞いを理解する ことへと大きく貢献します。

BepiColombo, the two-spacecraft mission to Mercury (MMO and MPO)

Exploring the origin of Mercury

Mercury, the inner-most planet of the solar system, has the peculiar characteristics of having a huge core. Understanding how this planet formed would contribute to our understanding of the origin of the solar system.

Exploring the origin of the Mercury's magnetic field

Why do Earth and Mercury have magnetic field while Venus and Mars do not? The planetary magnetism theme will be explored via high quality measurements.

Exploring the dynamics of the Mercury's magnetosphere

The peculiar setting of the Mercury's magnetosphere sets a unique and precious stage in the course of the Plasma Universe research

水星磁気圏探査機

スピン衛星:磁場、大気・磁気圏、内部太陽圏を探査

- ●固有磁場の解明
- 水星周辺の磁場を高い精度で計測し、惑星磁 場の成因を探る。
- ●地球と異なる特異な磁気圏の解明
- 水星磁気圏の構造や運動を観測し、地球磁気 圏と比較して惑星磁気圏の普遍性と特異性を 明らかにする。
- 水星表面から出る希薄な大気の解明

ナトリウムを主成分とする希薄大気の大規模 構造・変動を観測し、その生成・消滅過程を探る。

●太陽近傍の惑星間空間を観測

地球近傍では見られない太陽近傍の強い衝 撃波を観測し、そのエネルギー過程を解明する。

Mercury Magnetospheric Orbiter (MMO)

Spin satellite: Exploring the magnetic field, atmosphere, magnetosphere, and inner heliosphere.

- Measurement of the intrinsic magnetic field Pursue the origin of the magnetic field via high-quality measurements
- Output the unique magnetosphere Contribute to the general framework of magneto-
- spheric physics via comparative approach. Understanding the surface-derived thin atmosphere

of Mercury Observe the structure and its temporal variation of the sodium atmosphere in order to pursue its formation/loss mechanisms

Observing the near-sun heliospheric phenomena Quantify ultra strong interplanetary shocks that are not accessible at 1 AU.

MMOに搭載される科学観測装置/Scientific payloads to be loaded on MMO

MPPE プラズマ/粒子観測装置 Mercury Plasma Particle Experiment	電子、イオン質量分析、太陽風イオン、高エネルギー電子・イオン、高速中性粒子 (国内:9機関、海外:11機関) Electron and ion mass analysis, solar wind ion, high-energy electron/ion, and high speed neutral particles (Japanese inst.: 9, Foreign inst.: 11)
MGF 磁場観測装置	水星磁場·太陽風磁場(国内:8機関、海外:5機関)
Magnetic Field Investigation	Mercury magnetic field / Solar-wind magnetic field (Japanese inst.: 8, Foreign inst.: 5)
PWI プラズマ波動・電場観測装置 Plasma Wave Investigation	電場、プラズマ波動、水星・太陽電波、電子密度・温度(国内:8機関、海外:10機関) Electric field, plasma waves, radio waves, and electron density/temperature (Japanese inst.: 8, Foreign inst.:10)
MDM ダスト検出器	星間ダスト、水星起源ダスト (国内:7機関、海外:1機関)
Mercury Dust Monitor	Dust from Mercury and interplanetary & interstellar space (Japanese inst.: 7, Foreign inst.: 1)
MSASI 大気分光撮像器	Na大気分光撮像(国内:5機関、海外: 1 機関)
Mercury Sodium Atmosphere Spectral Imager	Sodium atmosphere spectral image (Japanese inst.: 5, Foreign inst.: 1)

水星表面探査機

3軸衛星:表面の地形・組成、重力場・磁場および 内部構造を探査

水星の内部構造・表面の精密探査から、その起 源と進化を解明し、太陽系最内部における情報 から太陽系の起源にも迫る。

Mercury Planetary Orbiter (MPO)

3-axis satellite: Exploring the surface features and compositions, gravity and magnetic fields and the internal structure.

Obtain high quality mapping of the surface features and compositions of Mercury in order to elucidate its origin and evolution. With the detailed info of the most inner planet in hand, pursue the origin of the solar system.

MMOとMPOの予定軌道/Planned Orbits of MMO and MPO

MPO軌道:周期2.3時間、高度400km×1.500km MPO orbit: Cycle: 2.3hours, Altitude: 400km×1,500km

MMO orbit: Cycle: 9.3hours, Altitude: 400km×12,000km

水星の表層·内部構造を解明するMPO探査機(ESA)は、高度 400km×1,500kmの極軌道を周回するのに対し、磁場・磁気圏を解明 するMMO探査機(JAXA)は、その外側の高度400km×12,000km の極軌道を回ります。

MPO spacecraft (ESA) for studying Mercury's surface and internal structure will enter polar orbit at an altitude of "400km×1,500km". The MMO spacecraft (JAXA), for studying magnetic fields and the magnetosphere, will enter polar orbit at an altitude of "400km×12,000km" - outside the MPO's.

JAXAが担当する水星磁気圏探査機(MMO) (全質量:約285kg、観測装置質量:約45kg)

MMO to be developed by JAXA (Japan)

(Total mass: about 285kg, Payload: about 45kg)

- ・約430℃に達する水星表面からの輻射など過酷な高温環境に耐える 耐熱技術を開発
- ・日欧共同の開発による最先端のヤンサー群を搭載
- Develop heat-resistant technology resistant to harsh, high-heat environments For example, radiation from Mercury's surface that may reach about 430 degrees Celsius.
- Loading cutting-edge sensors co-developed by Japan and Europe

ESAが担当する 水星表面探査機(MPO) (全質量:約1810kg、観測装置質量:約80kg) MPO to be developed by ESA (Europe) (Total mass: about 1,810kg, Payload: about 80kg)

(日本語 Japanese) http://www.isas.jaxa.jp/j/enterp/missions/mmo/

宇宙航空研究開発機構 広報部

〒101-8008 東京都千代田区神田駿河台4-6御茶ノ水ソラシティ Tel.03-5289-3650 Fax.03-3258-5051

リサイクル適性(A) この印刷物は、印刷用の紙 リサイクルできます。 再生紙を使用しています ISE1401

Japan Aerospace Exploration Agency **Public Affairs Department** Ochanomizu sola city, 4-6 Kandasurugadai, Chiyoda-ku Tokyo 101-8008, Japan Phone:+81-3-5289-3650 Fax:+81-3-3258-5051

(英語 English) http://www.isas.jaxa.jp/e/enterp/missions/mmo/

JAXAウェブサイト JAXA Website http://www.jaxa.jp/ JAXAメールサービス JAXA Mail Service http://www.jaxa.jp/pr/mail 宇宙科学研究所ウェブサイト Institute of Space and Astronautical Science Website http://www.isas.jaxa.jp/j/