Satellites and Spacecraft Greenhouse gases Observing SATellite-2 (GOSAT-2)

Under Development

About Greenhouse gases Observing SATellite-2 (GOSAT-2)

Taking over from IBUKI to enhance the functionality and performance of greenhouse gas observations

Experts say that greenhouse gases produced by human activity represent one of the biggest causes of global warming. The Intragovernmental Panel on Climate Change (IPCC), an international organization of specialists that conducts scientific research on climate change and evaluates related climate policies, released its Fifth Assessment Report in 2013. In the document, the authors warned that “Warming of the climate system is unequivocal... It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century... Continued emissions of greenhouse gases will cause further warming and changes in all components of the climate system.”
Hoping to advance research on the global warming phenomenon, JAXA has joined forces with the Ministry of the Environment and the National Institute for Environmental Studies to develop “IBUKI” (GOSAT) - the Greenhouse gases Observing SATellite - and commence GOSAT-based observations of carbon dioxide and methane in 2009. Prior to the creation of the IBUKI, researchers struggled with obtaining accurate, consistent data for comparison purposes due to the limited observation scope and the fact that different countries gathered observation data at different levels of precision and tabulated the results via different methods. The IBUKI, however, made it possible to get an accurate map of carbon dioxide and methane concentrations around the globe.
As the successor to the IBUKI mission, GOSAT-2 aims to gather observations of greenhouse gases with higher levels of accuracy via even higher-performance onboard observation sensors. The project will serve to provide observation data to environmental administrations and drive international anti-global warming efforts.

Characteristics of Greenhouse gases Observing SATellite-2 (GOSAT-2)

The GOSAT-2 “eye”: An upgraded IBUKI
The IBUKI observed carbon dioxide and methane at accuracy levels of 4 ppm (*1) and 34 ppb (*2) , respectively, at a 1,000-km mesh. In order to generate even more precise data, the goals for the GOSAT-2 are to measure carbon dioxide at 0.5 ppm and methane at 5 ppb at a 500-km mesh.
Developers have also enhanced the satellite’s focused, target-point observation capabilities (target-point observation functionality), enabling the device to gather accurate readings from a broader range of target points - an ability that will be especially beneficial in evaluations of industrial areas, densely populated areas, and other areas with large quantities of greenhouse gas emissions.
*1 ppm is a unit that shows“parts per million”; 1 ppm is equivalent to 0.0001%.
*2 ppb is a unit that shows“parts per billion”; 1 ppb is equivalent to 0.001 ppm or 0.0000001%.

Anthropogenic source or natural source? Carbon monoxide can determine
In another improvement over its predecessor, the GOSAT-2 is also capable of monitoring carbon monoxide concentrations. Whereas carbon dioxide not only comes from anthropogenic sources like industrial activity and fuel combustion but also has natural origins in forests and biological activity, carbon monoxide emissions are byproducts of human activity alone – not the natural world. Analyzing combined observations of carbon dioxide and carbon monoxide will give researchers an effective means of estimating carbon dioxide emissions from anthropogenic sources.

PM 2.5: A new health hazard
Airborne PM 2.5 has become an increasingly concerning health hazard. The GOSAT-2 will help monitor PM 2.5 by gathering the data that scientists need to estimate PM 2.5 concentration levels.

Major Characteristics

Main observation targets Carbon dioxide, methane, carbon monoxide
Observation accuracy 0.5 ppm (carbon dioxide) and 5 ppb (methane) at a 500-km mesh over land
Onboard instruments Thermal And Near Infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS)
Thermal And Near Infrared Sensor for carbon Observation - Cloud and Aerosol Imager (TANSO-CAI-2)
Size 5.3m(X) x 2.0m(Y) x 2.8m(Z)
(16.5m(Y))(when expanded in orbit)
Weight 2,000 kg (maximum)
Generated power 5,000 W
Design life 5 years
Altitude 613km
Launch Vehicle H-IIA Launch Vehicle